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IMAGE SEGMENTATION

STANLEY L. SCLOVE
Departments of Mathematics and Quantitative Methods
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ABSTRACT
™

The problem of image segmentation is considered in the context of
a mixture of probability disctributions. The segments fall into
classes. A probability distribution is associated with each class of
segment. Parametric families of distributions are considered, a set of
parameter values being associated with each class. With each
observation is associated an uncobservable label, indicating from which
class the observation arose. Segmentation algorithms are obtained by
applying a method of iterated maximum likelihood to the resulting
likelihood function. A numerical example is given. Choice of the
number of classes, using Akaike's information criterion (AIC) for model

identification, is illustrated.
AY

Kevy words and phrases: Imdge processing, image segmentation, pixel

classification; pattern recognition; mixtures of distributions; cluster

analysis, isodata procedure, k-means procedure; Mahalanobis distance,

multivariate statistical analysis; relaxation methods
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APPLICATION OF THE CONDITIONAL POPULATION-MIXTURE MODEL TO
IMAGE SEGMENTATION

by

STANLEY L. SCLOVE
Departments of Mathematics and Quantitative Methods
University of Illinois at Chicago Circle

I. INTRODUCTION

A digital (i.e., numerical) image may be considered as a rectangular
array of picture elements (pixels), indexed by (i,j). At each pixel the same
p features are observed. We denote the features by

X

X oy X .

1’ 72 p
The vector of features is
X o= (XX, e, X0

The observed digital image is

(3,50 1=1.2,..001, j=1.2,...,0),
where
Xig T (ygpe Xagge oo %pyy)

is the vector of numerical values of the p fearures at pixel (i,j).

Examples. (i) In color television, p = 3 colors, the pixels are the

dots on the screen, and for pixel (i,j), xlij = red level, xqij =
£

3ij = blue level. (ii) In LANDSAT data, p=4

spectral channels, one in the green/vellow visible range, the second in the
red visible range, and the other two in the near infrared range.

green level, and x

An object is a set of contiguous pixels which mav be assumed to
be members of a common class. One task of image processing is
segmentation, grouping of pixels with 2 view toward identifying
objects.

In this context the conceptual model is that the image is a set of

pixels., and, also. the image consists of several segments. Each pixel
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belongs to one and only one segment. The segments fall into several

classes. For example, in a picture of a house the classes might be

brick, sky, grass, shadow and brush. Note that there might be several

separate areas of, say, grass. Each of these areas is a segment,

but they all belong to the class, '"grass."

The statistical model accompanying this conceptuai model is as follows:

--With each class of segment is associated a probability
distribution for the feature vector X;

--With each pixel is associated a label which, were it known to us,
would tell us which class of segment the pixel belongs to.

Each pixel thus gives rise to a pair Qg,l). where E_is observable and ¥ is
rot. In the context of this statistical model segmentation is -
estimation of the set of labels.

The number of classes will be denoted by k. The algorithms developed
here try one value of k at a time. Methods of comparing the results for
different values of k will be discussed.

Often one considers parametric models, in which the class-conditional
probability functions f(x|c) are assumed known, except possibly for

the values of distributional parameters. That is,

f(x|lc) = hix:B ),
- v -

where éc is the parameter. E.g., in the multivariate Gaussian case
Ec consists of the mean and covariance matrix for class c. The

parameters are usually unknown. However, image processing is usually
done in a context where there is prior information about the parameters.
This can provide initial estimates for an iterative estimation algorithm.

we shall write Xe rather than xij’ using a single subscript t rather

than the double subscript ij for the pixels, even though they are in a
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two-dimensional array.
The label associated with the t-th pixel will be denoted by

¥ ,t=1,2,..., n=1J. The label is equal to c¢ if and only if

pixel t belongs to class c. It is convenient to represent the information

carried by the label in a k-dimensional vector Bt which consists

of k-1 zeros and a single 1, the position of the 1 indicating which segment
pixel t belongs to; i.e., .Et has a 1 as its Kt-th element and 0's
elsewhere. The probability density function (p.d.f.) of §t’ given gt,
is

£(x 18> = L 8

ct f(ftlc), (1.1)

where the summation is for ¢ = 1,2,...,k, and Bct is the c-th

element of Bt.

I7. THE PROBABILITY MODEL

It is assumed that the X's are conditir .ily independent, given the ¥'s.
-

(More complicated models are under study.) Then their joint p.d.f. is

the product over t = 1.2,....n of factors (1.1).
Note that, if X,, X,,..., Xn are independent and identically distributed

with a standard mixture density

f(i) Xc f(ilc)wc,

where the summation is for c 1,2,...,k and the sum of the class proba-

bilities LA is 1, then (1.1) gives the conditional deasity of the X's,

given their labels. It is for this reason that the model used here is called
the conditional population-mixture model. The standard mixture model has
been used for pixel classification; see, e.g., [7]. Further discussion of

the conditional model, in -he contex:t of statistical cluster analysis, and
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further references are given in [10].
A likelihood approach is illuminating in that it can show how
ad hoc optimality criteria (objective functions) which have been proposed

relate to likelihood function in particular probability models.

Note that (1.1) can be written as a product

)
_ ct
f(ftlgt) = Hc flx le) 77, 2.0

where the product is over ¢ = 1,2,...,k. This form is often more convenient,

and we shall use it in what follows.
II1I. THE SEGMENTATION ALGORITHM

Using (2.1) and the conditional independence assumption, one sees that

the joint p.d.f. of the Xt, given the gt’ is

9
M. [h(x.5B)] °t .

This likelihood is to be maximized cver all assignments of pixels to classes
and over all permissible parameter values. Many ad hoc schemes can be
applied to this maximization problem. E.g., one way to maximize is to start
with & given segmentation. take each observation successively and shift
it to the first segment for which a shift results in an increase in
iikelihood, and loop through the data until no pixel changes classes.

The algorithm developed here is an iterative, back-and-forth procedure.
we first maximize with respect to (w.r.t.) the 8's (holding the B's
fixed at initial values), then w.r.t. the B's (holding the 8's fixed
at the values obtained in the previcus stage), then again w.r.t. the 8's
(holding the B's fixed at the values cbtained in the previous stage),

etc. We stop when nn € changes. i.e.., when no pixel changes classes, or

when a specified amount of computer time is used or a specified number of
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iterations has been performed.

An alternative way of starting the procedure would be to start with
an initial segmentation rather than with initial guesses of the g's.
It is clear that, for fixed values of the E's, say E's, the

likelihood is maximized, for each t, by taking the estimate TCt of ect

to be
1 if h(§£;gc) = maxd{h(§t;9d))
= (3.1)

0 otherwise

T
ct

(In case of ties an arbitrary choice is made; e.g., the observation is
assigned to the tieing class with smallest subscript.) 1In other words,

segmentation proceeds by allocating pixel t to that class ¢ for which the

estimated- probability density of the observation x

i est.
x, 1is larges

Note that, having tentatively estimated the g's at any stage, i.e.,

having tentatively segmented the image. estimation of the g's is reduced

simply to ordinary maximum likelihood estimation in the particular parametric
family at hand. This is a special advantage of this approach.
Let @ denote the set of 8's and B the set of B's. Let
- - - -

L(B, ), or simply L for short, denote the likelihood. Let B(S)

denote the value of B which maximizes L at the s~th stage of the

-

iteration, and let 8(5)

denote the value of 0 which maximizes L

(s)

at the s-th stage of the iteration. Then B(S) maximizes L(B , 9)

w.r.z. 9, and B(s) maximizes L'E,e(s-l)) w.r.t. B. This

- ] -

back-and-forth maximization is an example of the relaxation method {Southwell's |

method): see [7, pp. 241ff.] and [10,11]. It is true that
'St efs)y » Lets, (s

t G
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L(B(s), 9(5+1)) > L(E(s)’ g(s))
That is, at nc stage of the procedure can the value of the likelihood
decrease; however, there is no guarantee of convergence to the global maximum
(neither do alternative clustering algorithms guarantee convergence to the
global maximum of their objective functions). To see how the procedure

can fail to converge to a global maximum, suppose it happens that

L(E(S): 9.(5)) > L(},g(s)) for all B,
or

L, 8y > L3'®), ® for all g..
Then the procedure will terminate at the s-th stage, without having
necessarily reached the global maximum. That is, if, having maximized
w.r.t. one of the variables B or 0, we happen to find ourselves at a
(relative) maximum w.r.t. the other, we may not reach a global maximum.
In other words, the procedure could conceivably stop at a multidimensional

saddle point.

IV. APPLICATION TO PARTICULAR DISTRIBUTIONS
Now we consider application of this general method to particular
families of distributions. First we consider normal distributions
with common covariance matrix, for in this case it becomes clear how
the model of the present paper establishes a link with some existing
clustering procedures.

A. Multivariate Normal Distributions with Common Covariance Matrix

in the case of normal distributions with means uc, c =1,2,....k,

anc common covariance matriyx I, the likelihood takes the form
-~

-np/2,.,-n/2 e e

(27 i

where the quadratic form q is given by
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where ' denotes vector transpose. This quadratic form is the squared
(Mahalanobis) distance between x and y in the metric of I. Here

(3.1) is equivalent to

-

= (4.1)

0 otherwise,

1 if q(x,:m .8) = ming{q(x, im;.9)}

Tct

where m. and § are, respectively, the estimates of TN and

E. That is, pixel t is assigned to that group to whose tentatively
estimated mean vector it is closest, where the distance is in the metric of

the tentatively estimated covariance matrix. Having estimated the 8's,

we have multivariate normal observations arranged into groups; maximization

w.r.t. the Hjs and 1 is accomplished by taking the group mean

vectors as estimates of the u's, and the within-groups sum-of-products
matrix gives the estimate of I. The procedure is iterated: using

new estimates m., c= 1,2,...,k, and S, the rule (4.1) is applied

again. Then new m's and a new S are calculated: etc. The Mahalanobis
distances can be computed efficiently; see, e.g., [1, p. 107}.

Relation to the isodata procedure: This scheme is a MMahalanobis

distance version of isodata [4]. Isodata proceeds as follows. One
starts with tentative estimates of cluster means and assigns each
individual to the mean to which he is closest. (lIsodata uses Euclidean
distance, or modified Euclidean distance in which different weights are

assigned to the p dimensions.) The cluster means are then re-estimated,

and one loops through the data again, reassigning the individuals, etc. Note
the similarity to our scheme: We star:t with tentative estimates of the means

and covaraiance matrix and assign each individual to the mean to which he is
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closest, using Mahalanobis distance in the metric of the tentatively

estimated covariance matrix. The means and covariance matrix are then
re-estimated, the individuals (pixels) are re-allocated to clusters (segment

classes), etc.

An important difference is that our scheme employs Mahalanobis

distance rather than Euclidean or weighted-Euclidean distance. It is

worth emphasizing that it is the Mahalanobis distance based on the

within-groups sum-of-products matrix that arises here; some data
analysts use the total sum-of-products matrix, which is not
appropriate; see, e.g., [3]. Thus, if one wants to achieve use of a

proper metric by making a linear transformation of the data, this would

have to be done at the beginning of each iteration, making the
appropriate transformation based on the covariance matrix estimate
obtained at the previous iteration.

Relation to the k-means procedure: Arranging the coﬁputation

differently, updating the estimates of the means and covariance matrix
after each individual pixel is assigned rather than waiting until all

have been assigned, produces a Mahalanobis-distance version of the k-means
procedure [8].

A numerical example: As a sample "image" the Fisher iris data were

used. This dataset consists of 4 features measured on 150 flowers, 50 in
each of three species. To form a digital image the 150 flowers were arranged
into a 13 x 10 rectangular array, rows 1-3 being species 1, rows 6-10 being
species 2, rows 11-15 being species 3. This means that the true segmentation
is as follows. (Note that, although these data are arranged in a rectangular

array. no use was made of the spatial information. Paper [11] is a
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preliminary report of the development of algorithms incorporating spatial and

contextual information.)

TRUE SEGMENTATION:

ROW: COLUMN:

1 2 3 4 5 6 7 8 910
11 1 1 1 1 1 1 1 11
21 1 1 1 1 1 1 1 11
31111111111
411 1 1 11 1 1 11
511111 11 1 11
6 2 2 2 2 ¢ 2 2 2 2 2
7 2 2 2 2 2 2 2 2 2 2
8§ 22 2 2 2 2 2 2 2 2
g 2 2 2 2 2 2 2 2 2 2

10 2 2 2 2 2 2 2 2 2 2
11 3 3 3 3 3 3 3 3 3 3
12 3 3 3 3 3 3 3 3 3 3
13 3 3 3 3.3 3 3 3 3 3
4 3 3 3 3 3 3 3 3 3 3
15 3 3 3 3 3 3 3 3 3 3

Below are given results obtained by starting with initial means equal
to the measurements on flowers 50, 100 and 150. (These are easy for
the algorithm in the sense that they are in fact from the three
different species, but not so easy as, e.g., flowers 1, 51 and 101,
which are further apart. Startiing with means that are from correct
classes is analogous to applications where something is known about the
characteristics of the classes.) The results in successive iterations
were as follows. Convergence was reached on the fourth iteration, i.e.,
on the fifth iteration no pixel changed class. The execution time was

§.81 sec. on an IBM 4341,
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SEGMENTATION ON ITERATION 2:

CONFUSION MATRIX:

COLUMN:

ROW:

True Class
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SEGMENTATION ON ITERATION 3:

ROW: COLUMN: CONFUS. ..” MATRIX:
1 2 3 & 5 6 7 8 910 True Class
H 11 11 1 1 11 111 ] 1 2 3|
21 1 111 11 1 11 S B LT TP feee-
‘ 31111111111 1] 50 o] 0| 50
4 1 1 1 1 1 11111 Label 2| 0 47 0| &7
5111 11 1 1111 31 0 3 50 | 53
6 2 2 2 2 2 2 2 2 2 2 el R L s jomas
7 2 2 2 2 2 2 2 2 2 2 | 30 50 50 | 150
8 3 2 2 2 2 2 2 3 2 2 3 errors
9 2 2 2 3 2 2 2 2 2 2 -2 loge L = 190.4
10 2 2 2 2 2 2 2 2 2 2
11 3 3 3 3 3 3 3 3 3 3
12 3 3 3 3 3 3 3 3 3 3
13 3 3 3 3 3 3 3 3 3 3
14 3 3 3 3 3 3 3 3 3 3
1533 3 3 3 3 3 3 3 3 3
1 SEGMENTATION ON ITERATION 4:
ROW: COLUMN: CONFUSION MATRIX:
1 2 3 4 5 6 7 8 910 True Class
1 1 1 1 1 1 1 1 1 11 | 2 3|
- 2 1 111 1111 11 |ecmecmcccncaas J=e--
31 11 11 1 1111 11{ 50 0 0| 50
4 1 1 1 1 1 1 1 111 Label 2| O 48 1] 49
51 1 11 1 1 1 1 11 31 0 2 49 | 31
6 2 2 2 2 2 2 2 2 2 2 sme|memeecccnccnana o==-
702 2 2 2 2 2 2 2 2 2 | 50 50 50 | 150
8 3 2 2 2 2 2 2 2 2 2 3 errors
3 2 2 2 3 2 2 2 2 2 2 -2 loge L = 187.6
6 2 2 2 2 2 2 2 2 2 2
3 3 23 3 3 3 3 3 3
E 12 3 3 3 3 3 3 3 3 3 3
E 13 3 3 3 3 3 3 3 3 3 3
% 1« 3 3 3 2 3 3 3 3 3 3
; 15 3 3 3 3 3 3 3 3 3 3

3 All computations reported here were carried out using FORTRAN computer
programs written by the author. These programs have been sent to the

Statistics Program at the Office of Naval Research for deposit in the

Naval Research Laboratories.
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B. Multivariate Normal Distributions with Different Covariance Matrices

The algorithm generated for this case turns out not to be simply to use
a different Mahalanobis distance for each cluster. (The complication
which occurs is analogous to that in classification, i.e., discriminant
analysis, where one is led to quadratic discriminant functions if the
covariance matrices differ.) The likelihood is

’ -8 /2
~np/2 ct
(2n) Hc Ht 1T |

I exp(-2 I 0  q(x. 5y ,I)/2].

ctec

Equation (3.1) becomes

172

1 if setting d=c maximizes IEdI exP['q(ftintzd)/zl

ct (4.2) !

0 otherwise .

Maximizing the expression in (4.2) is eqguivalent to minimizing

log IZgl +  alx;ingly)
This involves not only the Mahalanobis distance between the observation and
the mean of the given class but also the logarithm of the determinant of the
covariance matrix for the given class.

It has been noted (see, e.g., [6]) that in the standard mixture
modei for this case the supremum of the likelihood is infinity. This
is reflected in the fact that in our algorithm it would be possible that at
some ‘stage one of the classes would consist of a single pixel, so that the
tentative estimate of the mean of that group would be the feature vector for
that pixel, and the tentative estimate of the covariance matrix of that
cluster would be undefined.

Numerical examole, continued: Results similar to those for the case

of common covariance matrix were obtained using the algorithm for this case.
with the adjustment for determinants of the covariance matrices. However,

when these adjustments were omitted, and the clustering was performed

| ARt

[P “ e e e o e
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using only the Mahalanobis distances, without adding the logarithm

of the determinant of the covariance matrix, the results were poor.
Fifty flowers were correctly assigned to class 1, but only 6 were assigned
to class 2, the remaining 94 being assigned to class 3. Also, it took

twelve iterations and 27 sec.'s of CPU time to obtain this poor result.
P

V. COMPARISON WITH THE METHCD BASED ON THE STANDARD MIXTURE MODEL

Clustering based on the standard mixture model was considered in [14].

Under that model the posterior probability that Individual t belongs to

Class c is

Te h(ft;gc)/zd Td h(ftiéd) ) (5.1
Individual t is assigned to that class ¢ for which the estimate of (5.1) is
largest, i.e., to that class for which the estimated posterior probability of i
membership is largest. On the other hand, with the conditional mixture
! model, Individual t is assigned to that class ¢ for which the estimate of the

density h(fx;éc) is largest.

Wolfe [14] has provided computer programs for the standard mixture model

in the case of normal distributions. As is well known, the likelihood

equations for mixture problems are relatively complicated. In [14] they are

|
&
!
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solved by a multivariate Newton-Raphson iterative method. This involves the
assignment of arbitrary initial values to start the iterative solution, as
does the method described here.

VI. SOME REMARKS ON STATISTICAL INFERENCE

The maximum likelihood estimate of (g,@) is the value (b,t) for which
the likelihood L is largest. The quantity L(b.t) is the corresponding
maximum value of the likelihood. To approximate (EJEJ one uses the

algorithm. Let A(§:9) = L(EJQJ/L(Esf)' Let F denote the large

sample cumulative distribution function (c.d.f.) of -2 loge A,

. c < < = .
llmn*_Pr[ 2 log, A(ELQ) £ x] F(x).

Suppose that F is independent of the true values (239). E.g., it may be
the c.d.f. of a chi-square distribution with an appropriate number of
degrees of freedom; it is necessary to investigate the extent to which

the large sample theory of the generalized likelihood ratio applies when
there are incidental parameters (such as the labels).

A. Confidence Sets

Let Xy denote the upper a-th percentage point of F. Then

l-q F(xu) =z Pr[-2 logeA(B,e) <€ x |

a

Pr[-2 1°8eL(339) < Xy + 2 logeL(E.E}]
$O that
{(B,8): -2 log L(B.®) £ x_4 210g L(b.t)}
- e [ a e -

is an approximate 100(1-a)% confidence set for (B,9). Denote by

- e

(b',t') the estimates produced by the algorithm. Then., since there
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is a possibility these have not quite converged to the maximum likelihood
estimates (b,t), we have L(b',t') € L(b,t). Thus a conservative
[ - - - e ad
confidence set (one that contains more values of (B.g) than the true

confidence set and thus has confidence coefficient at least 1l-a )} is

{(8,9): -2 log L(B,8) < x + 2logL(b’,t")}.

B. Some Remarks on Choice of Number of Classes

One ad hoc approcach to the choice of number of classes is to
follow the suggestion in [8] of introducing refinement and coarsening
parameters R and C such that two clusters join when their mean
vectors are less than C units apart and a cluster splits when its
diameter exceeds R.

Another approach is to run the algorithm with different choices of k and
compafe the results. Note that the likelihood function is a different
function for different values of k. Denote this dependence upon k by writing

the likelihood as Lk(B(k).G(k)). Let .Eﬁk), Ejk) denote the maximum likelihood

estimates for fixed k. Following the approach of [14] for the standard
mixture model, one might make a sequence of hypothesis tests to decide on k,

first comparing L.,(b(2),t(2)) with Ls(b(Bi.t’S)).then if necessary
comparing L3(b(3),t(3)) with La(b(-’.),z(A)), etc. In [14] the asymptotic

chi-square distribution of the generalized likelihood ratio is used; even in
the context of the standard mixture model this may not be the correct asymptotic
distribution.

Still another approach is to use Akaike's information criterion (AIC).
fSee, e.g., [1,2)." This statistic is

AIC(k) = -2 loge[max LP) + 2 m(k).

Here m(k: is the number of independent parameters estimated when using
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k classes. According to this viewpoint on model selection, the best model

is the one that minimizes AIC. According to AIC, inclusion of an additional

parameter isappropriate if loge[max L] increases by one unit or more,

i.e., if max L increases by a factor of e or more.

Numerical example, continued: There is some question as to whether

the Fisher iris data should be treated as two or as three species and
whether separate covariance matrices should be used for the species.
(See [3, pp. 109-110j.) Accordingly, we compare by AIC the four models
resulting from taking k=2 and 3 and using common and separate covariance
matrices. The results were as follows.

Values of AIC

common separate
covariance covariance

k matrix matrices

2 437.9 293.8

3 231.6 123.3

L L R R N kb W X O e i iy

For both values of k, the model with separate covariance matrices fared

better, and k=3 gave a smaller value of AIC than did k=2.

VII. DISCUSSION

A. Conclusions

A probability framework for clustering/segmentation problems has been
discussed. A general method of producing aigorithms which correspond to a
method of iterated maximum likelihood has been given. The general method
given here is plausible, is linked to a probability model, and is easy to

program. In the case of multivariate normal distributions with common

covariance matrix the general method produces schemes which can be viewed as
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improved versions of some existing schemes.
B. Remarks ]

The focus here has been on the parametric case, but the methods

discussed might be applied nonparametrically, by estimating the p.d.f.'s
f(fjc) as segmentation proceeds, using standard methods of density )
estimation.

Algorithms based on a likelihood function are based on the raw data
matrix, in contrast to mayv clustering procedures which are based on a matrix
of pairwise similarities or distances. The latter procedures have the
advantage of applicability to problems where a raw data matrix is not
available. When the raw data are available, such algorithms have the
theoretical disadvantage of not extracting all the information from the

observations and the computational disadvantage of preliminary computation of

all the pairwise distances.

C. Alternative Models

The focus here has been on a model in which the labels are treated as
functionally independent. In the standard mixture model they become
random variables and are treated as statistically independent.

To the assumption of Section I is seems reasonable to add:

--Each segment consists of more than one pixel.

As a corollary to this assumption, it follows that the labels are
functionally related, in as much as each label must be equal to one of its
eight neighbors. It would be interesting to study the problem resulting
from maximizing the likelihood function under this conditionm.
Alterndtively. if the labels are then treated as random. they would be a

two-dimensional Markov process. The author has developed an algorithm for
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¥ estimation in this Markov model. Paper {11] is a preliminary report on
this; a more detailed report is forthcoming.
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